Адрес: г. Пермь, ул. Усольская, 15
Тел: (342)257-64-64, 257-64-65
dsc_1038_r-228x228
Отправить заявку
Автоматизация тепловых пунктов

Внедрение комплексной автоматизации теплового пункта предполагает автоматизацию всех систем с целью создания оптимальных эксплуатационных режимов при одновременном поддержании требуемых температур воздуха в отапливаемых зданиях и получения максимально возможной экономии энергоресурсов.

Преимущества автоматизированного теплового пункта

  • Сокращение общей длина трубопроводов тепловой сети
  • Капиталовложения в тепловые сети, а также расходы на строительные и теплоизоляционные материалы снижаются на 20—25%.
  • Расход электроэнергии на перекачку теплоносителя снижается на 20- 40%.
  • Экономия тепловой энергии составляет около 20-30 %.
  • За счет автоматизации регулирования отпуска тепла конкретному абоненту (зданию) экономится до 15% тепла на отопление.
  • Потери тепла при транспорте горячей воды снижаются в два раза.
  • Значительно сокращается аварийность сетей, особенно за счет исключения из теплосети трубопроводов горячего водоснабжения.
  • Так как автоматизированные тепловые пункты работают «на замке», значительно сокращается потребность в квалифицированном персонале.
  • Автоматически поддерживаются комфортные условия проживания за счет контроля параметров теплоносителей: температуры и давления сетевой воды, воды системы отопления и водопроводной воды; температуры воздуха в отапливаемых помещениях (в контрольных точках) и наружного воздуха.
  • Оплата потребленного каждым зданием тепла осуществляется по фактически измеренному расходу за счет использования приборов учета.
  • Появляется возможность существенно снизить затраты на внутридомовые системы отопления за счет перехода на трубы меньшего диаметра, применение неметаллических материалов.

Автоматика АГАВА для автоматизации тепловых пунктов [жилых зданий] обеспечивает:

  1. Автоматическое регулирование подачи теплоты в систему отопления и вентиляции по температурному графику (в зависимости от температуры наружного воздуха) с возможностью суточной коррекции графика (снижения температуры отопления в ночное время) и коррекцией для выходных и праздничных дней. Возможность принудительной смены режимов отопления по сигналу с дискретного входа. Ускоренный прогрев здания после энергосберегающего режима. Регулирование режима теплопотребления с учетом аккумулирующей способности здания и его ориентации по сторонам света. Возможность ручного регулирования.
  2. Автоматическое поддержание температуры контура горячего водоснабжения в соответствии с заданной уставкой с возможностью суточной коррекции. Возможность ручного управления.
  3. Управление циркуляционными насосами с защитой от сухого хода. Контроль наличия потока в трубопроводе. Переключение между насосами с заданным периодом для равномерной наработки.
  4. Управление подпиточным насосом для автоматического поддержания давления в системе отопления. Автоматика производит постоянное измерение давления в системе отопления, и в случае понижения давления ниже заданной уставки производит включение насоса подпитки. Возможность ручного управления подпиткой.
  5. Автоматическое поддержание температуры обратной воды. Отработка графика температуры обратной воды в зависимости от температуры наружного воздуха или температуры прямой воды (защита от завышения и занижения температуры обратной воды).
  6. Сигнализацию об аварийных и нештатных ситуациях.
  7. Хранение в памяти контроллера нескольких вариантов настройки под разные режимы работы.
  8. Ведение журнала действий персонала, архива технологических параметров.
  9. Передачу технологических параметров теплопункта в системы диспетчеризации по проводным и беспроводным каналам связи.
  10. Встроенный электронный регистратор.
  11. «Черный ящик» — детальный архив событий, предшествующих возникновению аварийной ситуации.

Экономическая эффективность автоматизации теплового пункта. Основные факторы экономии.

  • Снижение температуры воздуха в помещениях в часы отсутствия там людей – ночное время и выходные дни (для административных и производственных зданий). Это, примерно, 10 – 30 % экономии.
  • Снятие вынужденных избыточных расходов тепла в переходные, межсезонные периоды (как для жилья, так и для административных или производственных объектов отопления). Применение регулирования температуры СО на АТП позволяет сэкономить от 30 до 40 % в эти периоды. С учётом кратковременности данных периодов доля экономии в годовом теплопотреблении составляет порядка 2 – 6 %.
  • Снятие влияния на потери тепла инерции ТС – данный фактор наиболее эффективен при подключении ТП к крупным ТС, например, сетям от ТЭЦ (как для объектов ЖКХ, так и для административно – промышленных объектов). Экономию по данному фактору можно оценить только ориентировочно – порядка 3 – 5 % от общего объёма теплопотребления.
  • Экономический эффект за счёт применения графика качественного регулирования и поддержания постоянства расхода (постоянства перепада давления) в СО (как для жилых, так и для административных и производственных объектов). Применение данного фактора позволяет экономить около 4 % годового теплопотребления.
  • Учёт при управлении температурой отопления тепловых тепловыделений (для жилья). Применение специальных алгоритмов для жилых зданий может позволить сэкономить до 7 % общего теплопотребления для этих зданий. Реализовать данный график возможно только на индивидуальном АТП.
  • Возможность нормированного снижения нагрузки на отопление в часы максимальной нагрузки на горячее водоснабжение (для жилья). Это позволяет дополнительно добиться 1 – 3 % экономии.
  • Коррекция температурного графика по фактической производительности приборов отопления и с учётом мероприятий по энергосбережению архитектурно – строительного характера (как для жилья, так и для административно – производственных объектов). Эффект экономии от автоматизации в данном случае может составить в пределах 7 – 15 %.
  • Суммарная средняя экономия от внедрения АТП : для жилых зданий составляет от 20 до 40 % от общего объёма теплопотребления, а для объектов административного и производственного назначения от 25 до 60 %.

При анализе окупаемости необходимо сравнить данные по ожидаемой экономии со стоимостью оборудования АТП. Стоимость оборудования ТП в значительной степени зависит от технических условий присоединения.

При оценке окупаемости необходимо учитывать тот факт, что стоимость оборудования для автоматизации теплового пункта хотя и увеличивается с увеличением мощности, однако не пропорционально. Следовательно, наиболее актуальными с точки зрения сроков окупаемости являются более мощные ТП. При прочих равных условиях наиболее выгодным, т. е. наименее дорогостоящим является автоматизация объектов, присоединённых по зависимой схеме, работающих по повышенному температурному графику в условиях бездефицитного теплоснабжения. Кроме того, цены на узлы ввода, узлы учёта тепловой энергии, узлы присоединения систем отопления, вентиляции и ГВС не совсем корректно включать в расчёт окупаемости, поскольку они являются неотъемлемой частью любого теплопункта вне зависимости от того автоматизирован он или нет.

Типовые схемы

tab1

1. Одноступенчатая схема ГВС и отопление по независимой схеме

tab2

2. Одноступенчатая схема ГВС и отопление по зависимой схеме

tab3

3. Двуступенчатая схема ГВС и
отопление по зависимой схеме с управлением подмесом

Существует так же большое количество комбинаций частей представленных выше схем.

На вариантах 1-2 для движения теплоносителя в системе используется циркуляционный насос. Его параметры (напор и расход) подбираются под параметры системы, по ее сопротивлению и потере давления. Данный насос работает в течении всего отопительного периода с постоянным потреблением мощности на одной частоте вращения. Данные схемы являются наиболее надежными и распространенными на практике, но одновременно не экономичными с точки зрения потребления электрической энергии.

Отдельного внимания заслуживают схемы отопления, для которых движение теплоносителя в системе происходит за счет перепада давления теплосети, к которой присоединяется система отопления. Тепловой пункт по схеме 3 работает следующим образом: контроллер, в зависимости от температуры наружного воздуха, формирует уставку температуры частотному преобразователю, которую необходимо поддерживать на подаче в систему отопления. Далее частотный преобразователь при помощи встроенного ПИД-регулятора поддерживает эту температуру, снижая или увеличивая скорость вращения насоса, установленного на линии подмеса. Для данной схемы необходимо наличие обратного клапана на подаче из теплосети для обеспечения возможности работы насоса с частотой вращения близкой к номинальной.

К явным плюсам схемы 3 относительно остальных можно отнести следующие моменты:

  1. Отсутствие дорогостоящего двухходового или трехходового клапана, вместе с электроприводом.
  2. Дополнительная экономия электрической энергии при использовании частотного преобразователя, так как частота, с которой работает насос в процессе эксплуатации, меньше или равна номинальной.
  3. Увеличение ресурса насоса.
  4. Большая свобода в выборе мощности насоса.
  5. Меньшая зависимость от перепада давления воды на входе ТП.
  6. Стабилизация расхода теплоносителя в сети.
  7. Независимость давления в сети от температуры подающей воды.

Состав комплекта

  1. Шкаф КИПиА
  2. Комплект термосопротивлений (Темп. воды на входе/выходе, темп. наружного воздуха, темп. теплоносителя в систему отопления, темп. воды в систему ГВС)
  3. Комплект датчиков давления (давление воды в системе отопления, давление воды в системе ГВС)
  4. Возможна дополнительная комплектация датчиками расхода, давления воды на входе, тепловычислителем.
Заполнить заявку





Нажимая на кнопку «Отправить», Вы соглашаетесь на обработку персональных данных в соответствии с политикой конфиденциальности

×